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I. DETERMINATION OF POINIEI OF' ZERO CHARGE 

1. Introduction 

The rad io t racer  method f o r  inves t iga t ion  of adsorption was 

used f o r  the measurement of po ten t ia l s  of zero charge of t h ree  more 

metals, namely, platinum i n  acid solut ions,  gold and s i l v e r .  

2. Experimental and R e s u l t s  

Platinum : 

The doubly clad platinum on nickel  tape was used. The tape 

was washed with acetone and was vapor degreased with t r ichloroethylene.  

It was further treated with conc. sulphuric  acid,  washed with water 

and then threaded through the  c e l l .  

The so lu t ion  i n  the cleaning compartment of t he  c e l l  was 0.01 N 

M naphthalene HC104 and the adsorption compartment contained 1.8 x 

with appropriate concentration of sodium perchlorate at  pH 3. Proce- 

dure of anodic and cathodic puls i rq  followed by a long cathodic pulse  

was adopted. 

t r a n s f e r r i n g  it i n t o  the adsorption compartment. 

The tape was washed wi th  deaerated d i s t i l l e d  water while 

The adsorption curves were determined for  e l e c t r o l y t e  concen- 

t r a t i o n s  of 1 N, 0.1 N and 0.01 N sodium perchlorate .  

The PU: obtained from intersec t ion  of the adsorption vs .  poten- 

t i a l  (N.H.E.) curves f o r  the three coneentrations mentioned is  + 470 mv 

+ - 50 mv (N.H.E.). 



Gold 

Pure gold tape as obtained from the  manufacturer was washed 

with acetone, vapor degreased with t r ichloroethylene and fu r the r  t rea ted  

with conc. "$04 f o r  a minute or so. The tape was washed with d i s t i l l e d  

water and was ready f o r  t h e  experiment. 

The solut ion i n  the  cleaning compartment of t h e  c e l l  was 0.9 N 

N a C l %  and 0.1 N €El% and the naphthalene t r a c e r  concentra$ion 

1.6 x lom5 M. 
followed by cathodic pulse f o r  a few minutes was found su i t ab le .  

the tape  was washed i n  the middle compartment with deaerated d i s t i l l e d  

water before it entered in to  the adsorption compartment. 

The adsorption curves were obtained f o r  the e l ec t ro ly t e  concen- 

A f a i r l y  heavy anodic pulse (80 mA/cm2) f o r  a short time 

Again 

t r a t i o n s  of 1 N, 0.1 N and 0.01 N NtA!l%. 

The PZC obtained from the in te rsec t ion  of t he  adsorption vs. 

p o t e n t i a l  curve8 is  8een t o  be a t  370 mv - + 50 mv (N.H.E.). 

S i l v e r  

Pure s i l v e r  tapes were used. The tape was washed with acetone 

and vapor degreaeed w i t h  tr ichloroethylene and without any further 

treatmnt it was mounted in t h e  apparatus. 

The cleaning Bolution was 0.8 N N I S I %  + 0.2 N HCl% and the  

M along with concentration of C14 labeled naphthalene w a s  1.6 x 

appropriate concentration of sodium perchlorate at pH of 3. 

system is highly revers ib le ,  a small (0.5 mA/cm2) anodic pulse was 

passed f o r  a long time. When t h e  tape was about t o  be drawn out a 

As &&lo; 
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cathodic pulse was given. 

t i o n  compartment it was washed with deaerated d i s t i l l e d  water. 

While the  tape  was moving i n t o  t h e  adsorp- 

The adsorption curves have been determined f o r  1 N and 0.1 N 

NaC 1% concentrations. 

The PZC obtained from the in te rsec t ions  of t h e  adsorption curves 

i s  3- 70 mv + - 50 mv (N,H,E.). 

The PZC values obtained by t h i s  method are i n  general  agreement 

with t h e  data  found i n  t h e  l i t e r a t u r e .  

Errata 

The legends of t h e  figures 1 and 2 of the previous report  

(1 October l S 3  t o  31 March 1964) should be as follows : 

0 Figure 1: Dependence on poten t ia l  of adsorption of naphthalene 

on n icke l  (washed with 02-containing d i s t i l l e d  water) i n  solut ions of 

0.1 N NaC104 ( 0 )  and 0.01 N N&C104 ( X )  at a pH of 13. 

naphthalene 5 x M. 

Concentration of 

Figure 2: Dependence on poten t ia l  of adsorption of naphthalene 

on n icke l  (washed with d i s t i l l e d  water free from 02) i n  solut ions of 

0.1 N NaClqC (X) and 0.01 N NaC104 (0) a t  a pH of 13. 

naphthalene 4 x 10-5 M. 

Coneentration of 
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A THEOHETEAL ANAIXSIS OF W POTENTIAL SWEEP METHOD 

1. Introduction 

The po ten t i a l  sweep method is essen t i a l ly  an extension of polar-  

ographic techniques, i n  which the  po ten t i a l  of a system is controlled 

ex te rna l ly  and i s  made t o  vary, usually a t  a constant rate. 
1 applied first as a t r iangular  sweep by Sevcik 

theory i n  cases where the  reaction is  p a r t i a l l y  o r  completely controlled 

by d i f fus ion  has been given by Delahay.2 Application of the  method 

f o r  t he  study of adsorption of electrochemically ac t ive  intermediates 

(i.e. species which can be formed on the  surface o r  removed by s teps  

It has been 

and t h e  corresponding 

involving charge t r a n s f e r )  has been made by W i l l  and Knorr 3 who studied 

the  adsorption of hydrogen and oxygen on noble metal electrodes.  

authors have derived relat ionships  between the  form of the  i - V  curves 

observed experimentally and the sweep rate, and interpreted t h e i r  

r e s u l t s  qua l i t a t ive ly  i n  terms of the  d i f f e ren t  degrees of i r r eve r s  - 
i b i l i t y  of t he  hydrogen and oxygen desorption s teps  on these  raetals. 

These 

Following the paper of W i l l  and Knorr, t he  t r i angu la r  sweep 

method has been widely used f o r  the study of anodic oxidation react ions 
4 -12 re levant  t o  f u e l  c e l l  technology. 

The po ten t i a l  sweep method as applied t o  anodic oxidation of 

organic fuels, e .g.,  alcohol^,^-^ organic acids  8,9 and hydrocarbons 11,12 

should r e a l l y  be divided i n t o  two c lasses  : (1) The slow sweep method 

with sweep rates i n  the  range of 5 - 50 mV/sec is a quasi-steady s t a t e  
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method where it is hoped (but never proved) that  t he  rate of change of 

potei i t ia l  with time is slow enough f o r  steady state k ine t i c s  t o  be 

e s s e n t i a l l y  established, while it is fast  enough so t h a t  impurities 

cannot accumulate on the electrode surface and a f f e c t  the cur ren t -  

p o t e n t i a l  re la t ionship .  

is  a t r ans i en t  method t o  be compared with galvanostatic t r ans i en t s ,  

intended mainly t o  measure the  concentration of adsorbed species  on the 

surface. 

oxidation is fast compared t o  the  rate of d i f fus ion  s o  tha t  no 

appreciable readsorption occurs dur ing  the  t r ans i en t  j (b ) the molecules 

can be removed from the  surface only by complete oxidation; ( c )  the 

double layer  charging cclrrent as well a s  the current  used t o  form an 

oxide l aye r  on the  surface are not a f fec ted  by the presence of the 

(2 )  The fast sweep method (102 - 103 V/sec) 

The main assumptions made here are that  ( a )  the rate of 

organic substance i n  the solut ion.  Of these, only the f irst  assumption 

can be ve r i f i ed  experimentally and the  others  are unl ikely ever t o  be 

va l id .  Moreover, the po ten t i a l  of peak current ,  o f ten  referred t o  as 

the  "adsorption po ten t i a l "  is an i l l -def ined quant i ty  which has been 

shown experimentally3 and theo re t i ca l ly  (see below) t o  be a funct ion of 

sweep rate. 

The i - V  curves obtained by the fast sweep method are equi-  

valent  t o  the d i f f e r e n t i a l  of the  V - t curves obtained ga lvanos ta t ica l ly .  

Thus i n  the range where the  Faradaic current  is mainly pseudocapacitative 

( i . p .  iF = k'4g!kt) 2s; hTitg 

double l aye r  capaci ty  and the adsorption pseudocapacity. With dV/dt - 
const .  the capaci ty  is proportional t o  the current  and the i - t curve 

observed experimentally i s  i n  f a c t  a C - V curve. 

= C $ J $ t ,  ;;here :: is the scE tf ths 

I n  comparison the 
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V- t curve obtained a t  constant current (galvanostat ical ly)  is i n  f a c t  

a V - q p lo t  from which a V - C plot can be obtained, e.g., by e l ec -  

t r o n i c  d i f f e ren t i a t ion ,  13 

I n  the following sections,  expressions are worked out f o r  t h e  

current-potent ia l  r e l a t ions  wherever possible and so a l s o  f o r  t he  peak 

poten t ia l s  and peak currents  i n  the case of some simple anodic and 

cathodic reactions Involving charge transfer. As w i l l  be seen below, 

i n  the other cases, it is  only possible t o  obtain a numerical so lu t ion  

of the d i f f e r e n t i a l  equation containing the time (or po ten t i a l )  as 

an independent var iable  and the current as the dependent var iable .  

de ta i led  analysis of the results of the  numerical computations now 

under way w i l l  be given i n  a following repor t .  

A 

2. Theoretical  Derivation 

A .  Anodic Adsorption Reaction 

A react ion of t he  type 

A- + A  + e o  (1) 

w i l l  be considered. 

the hydroxyl ion is an example of t h i s  type. 

The formation of chemisorbed oxygen from water o r  

It is possible t o  consider severa l  cases f o r  t h i s  reaction, 

depending on whether it is  fast or  slow and if  slow, depending on the 

regions of po ten t i a l  as well .  

depend a l s o  on the sweep direct ion (anodic and cathodic).  

w i l l  now be examined. 

The observed current  -potent ia l  r e l a t ions  

These cases 
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1. Anodic Sweep 

Case (i): Fast  react ion (very high exchange current  dens i ty)  

The Faradaic current ( i F )  is expressed as 

(2) $ = klaA- (1-Q)eP"IRT - k,l@ e -( 1- / )VF/RT 

where klj k-l a re  t h e  forward and reverse spec i f i c  rate constants when 

metal-solution po ten t i a l  difference V = 0. 

0 is  the  degree of coverage of the electrode with the  species A, 

and a 

reac t ion  is  f a s t ,  

is the  a c t i v i t y  of the A- ion a t  t h e  double layer .  Since the A- 

and also 

This case is then analogous t o  t h a t  of a charge transfer react ion,  

considered t o  be v i r t u a l l y  i n  eqd l ib r ium preceding the rete -determining 

step. The latter has been d e a l t  with by Bockris and Kits" and expres- 

s ions  f o r  t h e  pseudo capacity were derived i n  t h i s  work. Under these 

conditions,  equation (2)  may be rewri t ten as 

i .e.  

where 

hence 

kl K1 = - 
-i k 

W/RT KlaA- e 
@ =  

W/RT 1 + K a  e 
1 A' 
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KlaA- 

+ KlaA- = - 3 q Z T  e 

The net Faradaic current  may also be expressed as 

where 2 is  the  number of equivalents of A per  cm2 of t h e  surface. 

From equation (8) 

-VF/RT K a  
e * v  d@ 1 A- F- 

d t =  2 RT 
-w’RT + K a ) 

1 A’ (e 

Since V = Vo + vt where Vo is  the i n i t i a l  po ten t i a l ,  v t h e  sweep rate 

and V is the po ten t i a l  at time t . Combining equations ( 9 )  and (10) 

-VF/RT 

(e + K p A -  

2 KlaA- e zF 

0 
* v  (11) 5 = R F  -VF/RT 2 

It may be noted t h a t  t h e  expression multiplying v on t h e  r i g h t  

hand side of equation (10) is that  for t h e  pseudocapacity, as derived 

by Bockris and K i t a . 1 4  The t o t a l  current  is given by 

i = i  + i  
F D,L 

In t h e  range of po ten t i a l  where adsorption takes place and 8 

f rom 0.01 t o  0.99 it may be assumed t h a t  

goes 
A‘ 

a From equation (11) and (14), it follows t h a t  a t  a constant po ten t i a l ,  
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the  current  i s  proportional t o  t h e  sweep rate. Further,  at a constant 

sweep rate, the  current  is  proportional t o  t h e  pseudocapacity f o r  t h i s  

case 

Determination of peak current and po ten t i a l  : Condition f o r  

maximum i n  i - t (or V) curve i s  

- -  - 0  diF 
d t  

o r  from ( 9 )  

d2Q 
d t 2  - 
- -  

- 2e -VF/RT e -VF/RT + KlaA- 
-VF/RT 

+ K a  )3 
1 A' 

(e 
= -  

2 Z~-VF/RT K a - e -VF/RT 
1 A- 

K a  F v  
1 A- - 

2 2  (e -VF/RT + KlaA-)3 R T  
- -  

Thus, at  maximum 

= K a  e -V#/RT 
1 A' 

VM = - RT/F In K1aA- 

Using equation (18) i n  (ll), the peak current  is given by 

i = (ZF2/4RT) v 
F,M 

For t h i s  case,  the  peak current is  d i r e c t l y  proport ional  t o  the  

sweep rate whereas the  peak poten t ia l  is independent of v. 



Case ( i i ) :  Slow Reactions 

( a )  General Case 

The case considered is the one i n  which the forward and reverse 

currents  should be taken i n t o  account. 

equation (2) may be rewri t ten i n  the form: 

The current  ( as given by $1 

From equation (20) 

The above d i f f e r e n t i a l  equation (23 ) cannot be solved ana ly t ica l ly .  
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A numerical solut ion may, however, be obtained, s ince it is  possible 

t o  represent t h i s  equation i n  t h e  form 

It is  necessary t o  have a kcowledge of the  probable values fo r  

t he  constants i n  t h e  equation (23) f o r  t h i s  purpose. 

It is then possible t o  compare thecalculated i - t ( o r  V )  

curves with t h e  experimental ones and ascer ta in  t h e  cor rec t  values 

of t h e  rate constants and the symuetry f a c t o r .  

( b )  Linear Approximation: 

I n  t h i s  case t h e  approximation 
X e = l + x  

may be made. 

It then follows from equations ( 2 )  and (9 )  t h a t  

- -  de . v - 
dV 

Equation (28) cannot be solved ana ly t ica l ly .  An approximate ana ly t ic  

so lu t ion  may be obtained using the series method as w i l l  be shown below. 

L e t  W/RT = x (29) 



. .  F/RT dV = dx 

dv = RT/F ax 

Using equations (29) t o  (31) i n  equation (28)  

k a -  
F d@ e k a + k-l + x ( klaA- - (1- )k-l = - 1 A  (1 + x ) .  R T d x + Z v F  1 A -  ZvF 

(32 1 

where 

A + B x  = C + D x  dx 1 

*+ dx 0(A + B x )  = C  +Dx 

co 
Q = 2 an xn 

n=o 

n -1 
na x G = +  n= n 

(33) 

(34) 

a3 00 OD 
'> N xn-' + A=, a xn + B Z  a xn+l = C+Dx (41) 

n=o n=0 n% n n n 

Coeff ic ient  of xo 

al + Aa, = C 

2a2 + Aa + Bao = D 

3a3 + Aa2 + Bal = 0 

1 Coeff ic ient  of x 

C oe f f i c  i e n t  of x 

f rom (42) 

2 

al = C - Aao 
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from (43) and (45) 

= '[D - Bao - A(C - Aao)l  
2 

2 
= 1 - D - AC + a,(A 2 - B )  

.I 

= - qAa2 +Bal )  

= - - 1  -cI) - AC + a 0 (A2-*)) + B(C-Aao)) 

= L[D ; AC +BC + a,(+ - m =?)I 
3 -  
1 1  
3 - 2  

3 

"3 

2 
(47) 

(48 1 2 3 
+ a3X 8 = a t a x + a2x 0 1  
2 a1 + 2 a e  + 3a x dQ 

d2Q 
d x =  3 

(3x2 2 3 
- -  - 2a + 3a x 

d0 dx dV 
dt - d x ' d T ' d t  

Fv dQ 
RT dx 

dQ - -  

= -  . -  
d2Q Fv d dQ 

dt2  RT 5z (G) - = - .  

- Fv d dQ dx dV 
RT dx dx dV d t  

- - .  - ( - ) .  - .  - 

Condition for maximum of i vs . t is sane as for dQ/dt vs . t or d0/dx 

vs. x. mus maximum occurs when 
2% 

L x E - -  

M 3a3 
(53 1 

Using equations (46 j and (47 j i n  (53 j ,  t h e  peak po ten t i a i  (x = W[W) 

may be found. Using the  resul t ing expression f o r  xM i n  (49), t h e  peak 

current  may a l s o  be obtained. 



( c )  Conditions under which reverse current  may be neglected 

Under these conditions, equation (2)  reduces t o  

Condition for maximum is 

= j-F,M/ZF 
From equations (54) and (57), it follows tha t  

. .  

(58)  

(59 )  

From equation ( 5 9 ) ,  it follows t h a t  the  peak po ten t i a l  is  

l i n e a r l y  dependent on the  logarithm of the sweep r a t e .  

has, indeed, been observed experimentally at higher sweep r a t e s  i n  the 

This r e l a t i o n  

case of oxide f mation by W i l l  and 

ca l cu la t e  the chemical rate constant from the  in te rcept  of a p l o t  of 

It is also possible t o  

P is VM vs. log v if 

In  order t o  f ind  peak current, equation (54) is made use of. 

It can be wr i t ten  as 
d0 o W/RT 

ZF - = k a (1 - 0 )  e '  
d t  1 A' 
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pV°F/RT RT e vFt/RT + 
k a  - 

. .  - In  (1 - Q) = e w * e  

where B is  a constant.  

Let us assume t h a t  when t = 0, Q 4 0 

where 

. .  

O = A -  RT + B  
P vF 

k p A -  p VOF/RT 
A = - - -  e ZF 

RT 
B = - A P V F  

(64 

- In (1 - e )  = ART - pvFt/RT - 1) (66 ) VF (e . .  

Equation (54) may be wr i t ten  as 

1n 5 = In k a + In ( 1  - Q) + ,bVF/RT (67) 1 A- 
Using equation (66) and (67) 

-1) + , I~VF/RT PvFt/RT I n $  = l n k a  - (ART/VF)(e 1 A' 

Equation (68) is of fundamental importance i n  t h a t  it represents 

t he  c - m e n t  -potent ia l  r e h t i o n ,  independent of 8, over the  range i n  

which the  reverse current may be neglected. Since it is  possible  t o  

obtain k 

p l9 t  can then be made. 

from a VM vs.  log v plot ,  knowing p, a theo re t i ca l  5 vs.  V 1 
Using the  equations (58) and (59) which represent 

V at  t h e  peak po ten t i a l  

and the expression for the  peak potent ia l  then introduced, it follows 

t h a t  the  peak current is given b y  



i .e.  (71 

Under these conditions, too, the maximum peak current is propor- 

t i o n a l  t o  t h e  sweep rate. 

The ana ly t ic  so lu t inn  (equation (68)) may be used as a check 

of the numerical solut ions obtained as a computer under t h e  conditions 

i n  which the reverse current  may be neglected i n  comparison t o  the 

forward current.  

2. Cathodic Sweep 

When the sweep d i r ec t ion  is reversed s t a r t i n g  at the highest 

anodic poten t ia l ,  a s imi la r  analysis as i n  the preceding sect ion (1.1) 

may be car r ied  out.  

and i n  the case of the i r revers ib le  reac t ion  i n  vhich the an&ic current 

may be neglected is  an ana l f l ic  solut ion possible.  

examining t h e  la t ter  case which is dealt with belov. 

Only in t h e  case of the highly revers ib le  reac t ion  

It is  worthwhile 

Expression f o r  current  -potential  behavior, peak ccrrent  and 

peak potential - Region i n  which anodic current  can be neglected 

For t h i s  case, the Faradaic current is given by 
b = - k  B e  -(1- P)VF/RT 

-1 
from equation (2 j. DiiTereniiiai.itg equatioii (72) with respect to time 

Condition f o r  maximum is 



diF= 0 
d t  

i.e. 8 (1 - ,-! )vF = dQ/dt 

s ince equation (72) holds a t  the  maximum, 

i , e .  

-1 

20 

(74 1 

(75 1 

It must be noted tha t  v is negative during t h e  cathodic sweep and the 

negative sign within parentheses i n  the second term on t h e  right hand 

s ide i s  as expected. 

0 Equation (77) is a l s o  similar i n  form t o  equation (59) but with 

s igns  reversed and k replacing klaA-. Further,  the peak p o t e n t i a l  

becomes more cathodic with increase i n  sweep r a t e ,  as is observed, for 

example, in the case of oxide reduction on platinum. 

-1 

It is necessary t o  know the current -potent ia l  r e l a t ion ,  indepen- 

dent of 8, i n  order t h a t  the  expression f o r  the peak current may be 

obtained. The method used is similar t o  t h a t  i n  l(ii) (e), and is  

given beluw. 

Rewriting equation (72 ) using equation (9 ) 

v = V0>2 + vt  

where v ( 0  

(79) 
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- 
Equation 

a cathodic sveep 

lected.  This equation i s  similar i n  form t o  equation (68) which is t h a t  0 

(1- @ )ZvF 
(84 1 

(1 - ~ ) V F / R T .  

(a ) represents the current -potent ia l  r e l a t i o n  during 

for the  case i n  which t h e  anodic current  may be neg- 

for t h e  corresponding case i n  the anodic sweep. 

Using equation (77) i n  (84), t he  peak current  is given by 
7 

h 

+ In ZF *+ 1- In(-v)  

If t h e  approximation is made tha t  t h e  first -berm within t h e  

%,M = e RT 
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i .e.  

Equation (88) is ident ica l  with (71) except t h a t  (1- p) replaces 

p and (-v) replaces (+v). 

3 . Conclusions - 

An analy t ic  so lu t ion  of the d i f f e r e n t i a l  equation 

is possible only i n  t h e  case of very fast react ions o r  where the 

cathodic current  can be neglected i n  the  anodic sweep and t h e  anodic 

current  i n  the cathodic sweep. 

I n  the  former case, the peak po ten t i a l  i s  independent of t h e  

sweep r a t e  but the  peak current varies l i n e a r l y  with the  sweep r a t e .  

I n  the l a t t e r  case, t he  peak po ten t i a l  var ies  with the  logarithm of 

t h e  sweep r a t e  and the  peak current var ies  l i n e a r l y  with t h e  sweep rate. 

These semi-logarithmic relat ionships  between VM and log v have been 

observed experimentally by W i l l  and I(norr3 i n  the case of t h e  oxide 

formation and reduction react ions.  I n  these cases,  it i s  possible t o  

obtain values of t he  rate constants i f  p is  known. 

(ii) In regions where both forward and reverse current have 

t o  be taken i n t o  account, it is  necessary t o  car ry  out a numerical 

ana lys i s  independent of whether the exponential terms involving the 

po ten t i a l s  can be l inear ized o r  not. 

terms can be l inear ized,  it is possible t o  obtain a s e r i e s  solution. 

In  the  case of a numerical analysis it i s  necessary t o  use various 

values of kl, k-lr p and obtain a p lo t  05 iF vs. V(or t )  as a function 

In  the case where the exponential 
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of sweep rate and compare with the corresponding experimentd i - V (or  t ) 

curves. 

the reverse currents  may be neglected may be used f o r  t he  numerical 

analysis  and then a comparison mde with t h e  experimental values. 

Alternatively values of kl) k-l obtained i n  t h e  regions where 

4. Future work 

( i )  The d i f f e r e n t i a l  equations i n  i and .t f o r  t h e  case i n  

which both the  forward and reverse currents  have t o  be taken i n t o  

account w i l l  be solved numerically on a computer f o r  t he  oxide forma- 

t i o n  and reduction react ions.  

compared with the  data of W i l l  and Knorr. 

The t h e o r e t i c a l  r e s u l t s  w i l l  then be 

(ii) A theo re t i ca l  analysis f o r  a cathodic adsorption reac t ion  

0 w i l l  be made on the same l ines  as for the  anodic adsorption react ion.  

In  t h i s  case, a reac t ion  of t h e  type 

c+ f eo- -+c 

2c +c2 

w i l l  a l s o  be examined (e.g., the  hydrogen evolution reac t ion) .  

( i i i )  The experimental r e s a l t s  f o r  more complex reactions,  e.g., 

methanol o r  formic acid oxidation will then be examined theo re t i ca l ly .  
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111. CATAIXTE ACTIVITY FOR SIMF'IZ EUETRCDE REACTION 

Nature of the  Catalyst  Surface 

I. Introduction 

The e f f e c t  of gra in  s i ze  of an i n e r t  metal e lectrode on t h e  

r a t e  of simple electrochemical reactions has been s tudied and prelim- 

inary results i n  the  study a r e  given i n  the l a s t  Report. A s  an i n e r t  

electrode, platinum was chosen and simple react ions,  such as Fe 

and hydrogen react ion,  were chosen. 

case has been observed. 

2+ 3+ 

No e f f e c t  of gra in  size i n  e i t h e r  

/Fe 

This work has been extended t o  include three  crystal lographic  

planes of platinum s ing le  c rys ta l s .  Only hydrogen evolution react ion 

has been studied. 

the  c a t a l y t i c  a c t i v i t y  on various subs t ra tes  is described. It includes 

a c t i v i t i e s  f o r  hydrogen react ion on metals i n  a lka l ine  solut ions.  

I n  the  second p a r t  of t h i s  Report continued work on 0 

2. Experimental 

Three s ingle  c rys t a l s  i n  the  form of cyl inders  with t h e  basal 

planes corresponding t o  (loo), (110) and (111) planes, were f i t t e d  i n t o  

hollow cy l ind r i ca l  Teflon holders and suspended i n t o  t h e  solution by 

Pt wires. 

The s ingle  c r y s t a l s  were mechanically hand polished b y q  - 
polishing alumina (0.3 @). 

t h e  s w f a c e  of the c r y s t a l  looked bri&t.  

electro-etched t o  revea l  undamaged c r y s t a l  planes. The electro-etching 

was done by a l te rna t ing  current i n  a so lu t ion  of 20% H C l  sa turated with 

Polishing was done f o r  about 1/2 hour when 
/ 

Thereafter c r y s t a l s  were 
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e NaC1. The t h e  of etching was approxhately 30 minutes. P t  wire was 

used a s  a counter electrode. Solution was magnetically st irred.  After 

etching, c r y s t a l  was thoroughly washed by flowing conductivity water. 

Solution preparation was done i n  the same way as described i n  the 

previous Report During the pre-electrolysis ,  c r y s t a l s  were kept above 

the  so lu t ion  i n  hydrogen atmosphere. After pre-electrolysis ,  the  e lec-  

t rode  was dipped i n t o  the solut ion and the  cathodic Tafel  l i n e s  were 

determined. 

t o  block the s ingle  c r y s t a l  surface and increase resis tance t o  current  

flow. To avoid th i s ,  measurements were carried out under uns t i r red  

conditions.  The data are given i n  Table 1. It can be seen from the  

table that the r a t e s  were essent ia l ly  the same at a l l  three c rys t a l s .  

Bubbling of H2 gas i n  the  test e lectrode compartment tended 

These re su l t s ,  combined with the previous r e s u l t s  on electrodes 

0 w i t h  various grain s izes ,  can be taken t o  indicate  tha t  gra in  s i z e  and 

or ien ta t ion  of grains do not affect  t h e  rate of simple react ions con- 

s idered.  

TABIE 1 

TAFEL PARAMETEE3 ON VARIOTS PLANES W PLATINUM 

Crystal 

60 - 75 
55 

55 

1.4 10-3 

9 10-4 
J+ 

9 x 10 
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3 .  Cata ly t ic  - a c t i v i t y  of various metals i n  a lka l ine  solut ions 

Cata ly t ic  a c t i v i t y  f o r  hydrogen reac t ion  has been determined on 

a number of metal e lectrodes in  a lka l ine  so lu t ion .  Extreme precautions 

have been taken i n  preparation and pu r i f i ca t ion  of solut ion.  

t r a t e d  Baker ana ly t i ca l  grade NaOH so lu t ion  was rec rys t a l l i zed  three 

times i n  H2 atmosphere. 

dry i ce .  Excess of the so lu t ion  i n  c r y s t a l l i z a t i o n  was discarded by 

sucking out. 

r ec rys t a l l i zed .  

a calibrated tube f i t t e d  with ball j o i n t s .  

by tak ing  an aliqv.ot port ion and t i t r a t i n g  with H C l  solut ion.  Then the  

proper amoilnt was d i r e c t l y  t ransferred t o  the  c e l l  and a 0.1 N so lu t ion  

was made. 

drawn from the results i n  a lkal ine so lu t ion .  

Concen- 

The solut ion was cooled i n  methanolmixed with 

The c r y s t a l s  were allowed t o  m e l t  and then they were again 

F ina l ly  the pure conc. NaOH so lu t ion  waa withdrawn i n  

The so lu t ion  was standardized 

This work is under way and as of yet no conclusions have been 
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IV. , $ i I C T I V A T I ~ ~  OF EUCTRWU 
' I  v 

In  the  l a s t  Report, preliminary r e s u l t s  a re  given f o r  the 

galvanostatic po lar iza t ion  s tudies  of deactivation of platinum e l e c  - 
t rodes  during electro-reduction of dissolved oxygen i n  1 N su l fu r i c  

acid so lu t ion .  

and making use of the nature of polarization curves obtained a t  d i f f e r -  

ent current  dens i t i e s  and time in te rva ls ,  t he  change of apparent exchange 

cur ren t  dens i ty  of t h e  reac t ion  with time has been obtained. 

found that  the exchange current  density decreases by nearly one power 

of t e n  i n  the course of about 50 hours. These r e s u l t s  indicated tha t  

"impurity e f f e c t , "  o r  "poisoning" of t h e  electrode,  is the  cause of 

deact ivat ion.  Further study was, hovever, necessary t o  evaluate t h e  

exact causes of deac t iva t ion  i n  t h e  system under inves t iga t ion .  

Assuming a pseudo steady state a t  any given in s t an t ,  

It was 

- 

0 
I n  t h e  first part of t h i s  Report, s tud ies  ware.descr.ibed af 

the  deac t iva t ion  of platinum electrodes i n  oxygen d i s so lu t ion  and, i n  

the  second, f o r  ethylene oxidation react ions.  

1. Deactivation i n  oxygen reduct ion 

1.1 General 

If impuri t ies  from t h e  so lc t ion  a r e  the  cause of deac t iva t ion  of- 

t h e  electrode,  there are, presumably, two modes i n  which t h i s  can happen. 

( a )  Impurities generated during the e lec t rode  reac t ion ,  o r  

impuri t ies  spuriously added t o  the system primarily through t h e  sa tu r -  

at  ing gas, may d i r e c t l y  pa r t i c ipa t e  i n  electrochemical redox reac t ions  

at t h e  metal so lu t ion  in t e r f ace .  This w i l l  resul t  i n  t h e  change of 0 



mechanism from 'one electrode react ion cont ro l l ing  the  p o t e n t i a l '  t o  

'two o r  more reac t ions  control l ing t h e  p o t e n t i a l ' .  

e f f e c t  depends on t h e  redox s t a t e  of impurity, i t s  concentration i n  

solut ion,  and a l s o  on the  extent of adsorption depending upon the 

e lec t rode  po ten t i a l .  

(b) 

Thus, t h e  net 

Alternat ively,  impurities may poison the  e lec t rode  by 

masking the  electrode area with a non-conducting f i lm .  

t h e  e f f e c t i v e  area of t h e  electrode is reduced and thus  t h e  observed 

overpoten t ia l  f o r  t h e  same current increases. 

I n  t h i s  case, 

I n  e i t h e r  mode of deactivation t h e  extent of adsorption ( e ) ,  
depends on the  electrode poten t ia l .  If one starts with a f r e s h  sur face  

during galvanostat i c  po lar iza t ion  experiments, one observes a change i n  

po ten t i a l .  The change i n  potential. i n  t u r n  causes a s h i f t  i n  adsorption 

c h a r a c t e r i s t i c s  of impurities. From t h i s  po in t  of view, it is  d i f f i c u l t  

t o  evaluate the  t r u e  extent  of 'poisoning'. Under sach circumstances, 

it is des i rab le  t o  study deactivation under constant p o t e n t i a l  conditions. 

1.2 Experimental 

An experiment on deactivation may last  f o r  one t o  two weeks. I n  

order t h a t  s u f f i c i e n t  data are col lected i n  reasonable time, it was 

decided t o  run a larger nmber of experiments (d 4 - 6 )  simultaneously. 

For t h i s  purpose, two procedures f o r  po ten t ios ta t ing  have been used. 

I n  t h e  first,  a r e l a t i v e l y  low impedance potentiometer is  used as a 

voltage source between t h e  working e lec t rode  and counter e lec t rode .  

For t h i s ,  a non-polarizable counter e lec t rode  is used. 

of t h e  order of t o  amps are possible ,  if hydrogen electrode 

Currents 



is used as the counter e lectrode.  

res is tance between t h e  counter and t h e  t es t  e lectrode.  

a c e l l  developed f o r  t h i s  pclrpose is shown. It cons is t s  of two com- 

partments, (A) and (B).  The l a t t e r  compartment is  placed inside the 

( A )  compartment. 

coarse frit ( t o  minimize resis tance) .  The working electrode compartment 

A has provisions f o r  oxygen bubbling and mounting of the t e s t  e lectrode.  

Compartment (B ) contains counter electrode, which serves  a l s o  as a 

reference electrode.  This electrode i s  a palladium U-tube through 

which hydrogen i s  flowing. Nitrogen was bubbled i n  compartment (B)  t o  

sweep away oxygen t h a t  might be diryusing from the  t es t  electrode com- 

partment ( A )  towards the  reference electrode.  

The requirement is, however, low 

I n  Figure 1 

Solutions i n  both compartments are separated by a 

The system seemed t o  work well, but t he  fcllowing d i f f i c u l t y  

developed. Nitrogen bubbled i n  the  reference electrode compartment was 

not f u l l y  e f f i c i e n t  i n  removing the  oxygen d i f fus ing  t o  reference e l e c  - 
t rode .  

r e s u l t e d  i n  the  production of H202. 

i n  the reference e lec t rode  Compartment (A) ,  d i f fused back i n t o  t h e  

working c e l l  (B) .  

not desirable, p a r t i c u l a r l y  f o r  the long t i m e  study of t he  deact ivat ion,  

t h i s  set-up had t o  be discarded. Other reference electrodes,  l i k e  

Hg/H@Oh, Ag/AgCl, e t c . ,  were found unsuitable,  mostly due t o  t h e i r  

s o l d b i l i t y  and contamination of t e s t  so lu t ion .  

Reduction of oxygen a t  the palladium reference electrode 

As  experimentally found, H202 formed 

Since t h e  spurious addi t ion  of H202 t o  t h e  system is 

In the  second series of experiments Phi lbr ick operat ional  amp- 

l i f ie rs  (35A)  were used t o  bui ld  poten t ios ta t s  ( fou r ) .  

cons is t s  of a high gain, d .c .  d i f f e r e n t i a l  operat ional  amplif ier  

The poten t ios ta t  
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connected with negative feedback. 

e lec t rode  p o t e n t i a l  from the preset i3otential ( i . e ,  standard e .m.f .  ) 

is  amplified and applied (s ign inverted) t o  t h e  aux i l i a ry  electrode,  

thug cor rec t ing  t h e  i n i t i a l  departure. 

po ten t ios ta t  working with a s ingle  Philbrick power supply is given i n  

Figure 2. 

Any departure of t h e  reference 0 

The block diagram of t h e  

I n  order t o  maintain high p u r i t y  conditions throughout t h e  

course of experiments over two weeks, and t o  d i s t ingu i sh  between 

' r ec rys t a l l i za thn '  and 'poisoning' t heo r i e s  of deact ivat ion,  it is 

necessary t o  subject  the test  solut ion t o  continuous pre-e lec t ro lys i s .  

Continuous change of so lu t ion  would involve elaborate  arrangements and 

was discarded as a method. 

po lar iza t ion  have been modified t o  allow f o r  continuous p re -e l ec t ro lys i s .  

Cells previously used f o r  galvanostatic 

The main f ea tu re  of t h e  new c e l l  arrangement (Fig.  3 )  is t h a t  

so lu t ion  from test  electrode compartment flows along a l l  g l a s s  closed 

system i n t o  the  pre-e lec t ro lys i s  compartment. 

and the  pre-e lec t ro lys i s  compartments, an a l l  g l a s s  cen t r i fuga l  pump 

with magnetic stirrer is  s i tua t ed .  A constant l e v e l  head is  provided i n  

the  pre-e lec t ro lys i s  c e l l ,  so  tha t  t h e  same volume of t h e  so lu t ion  

leaves t h e  p re -e l ec t ro lys i s  compartment as en te r s  it. This arrangement 

maintained a constant so lu t ion  leve l  i n  t h e  t es t  -electrode compartment. 

The so lu t ion  overflowing through the constant l e v e l  i n  t h e  pre-e lec t ro lys i s  

c e l l  flows back i n t o  t h e  test  cell .  The rate of c i r c u l a t i o n  could be 

cont ro l led  by changing the speed of r o t a t i o n  of t h e  magnet. 

f ea tu re s  of t h e  c e l l ,  not shown i n  t h e  diagram, consisted of gas i n l e t s  

and ou t l e t s ,  water sealed stopcocks, counter and reference electrode 

compartments . 

0 

Between the tes t  electrode 

Other 

0 
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The present stage of t h e  work along these  l i n e s  s tands at a a 
point where arrangements have been made f o r  a c t u a l  measurements. 

Experiments have been designed t o  ca r ry  out deac t iva t ion  s tud ie s  on 

w e l l  annealed and s t ra ined  electrodes i n  presence and absence of im- 

p u r i t i e s  i n  order t o  evaluate fac tors  causing deactivation of e lec t rodes .  

2. Deactivation of e lectrodes by capacitance measurement 

2 . 1  Introduction 

It i s  known experimentally that  t h e  a c t i v i t y  of p la t in ized  Pt 

e lec t rode  decreases with t i m e ,  causing a decrease i n  cur ren t  dens i ty  a t  

a constant p o t e n t i a l  during anodic oxidation of organic compounds. 

was observed independently i n  t h i s  laboratory t h a t  t h e  ion ic  double 

l aye r  capacity decreases also with time i n  a manner which can be 

q u a l i t a t i v e l y  related t o  t h e  decrease i n  cur ren t .  

the capacity changes with time has been examined under various condi- 

t i o n s  and t h e  r e s u l t s  a r e  given below. 

It 

The manner i n  which 
0 

2.2 Experimental 

Experiments were car r ied  out at 25OC when ca2acity was measured 

i n  t h e  presence of N2) and at 8OoC when both current  and capacitance 

were measured i n  the  presence of e2;hylene. An usual 3-compartment pyrex 

c e l l  was used with stopcocks separating the working e lec t rode  compartment 

from the  counter and reference electrode compartments. 

mercurous su l f a t e  reference electrode was used, and p l a t in i zed  P t  

e lec t rodes  served as working and counter e lectrodes.  

A mercury- 

The working 
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electrode was act ivated by anodic and cathodic pulsing external ly  o r  

i n  t h e  c e l l .  In  the  latter case care was taken t o  avoid extensive gas 

evolution. 

cathodic polar izat ion.  

Activation outside the c e l l  was terminated by prolonged 

Capacitance measurements were made by applying a large galvano- 

s t a t i c  pulse t o  the electrode which was o r ig ina l ly  held at + 0.50 V 

N.H.E. The block diagram of the c i r c u i t  is  shown i n  Fig.  4.  

the  poten t ios ta t  and galvsnostat  were connected i n  t h e  c i r c u i t  with t h e  

former taking up a l l  t h e  current  produced by the la t te r .  Galvanostatic 

con t ro l  i s  a t ta ined  by opening a s ingle  switch which disconnects t h e  

poten t ios ta t  from t h e  c i r c u i t .  

I n i t i a l l y ,  

For high pu r i ty  runs, t r i p l e  d i s t i l l e d  water was re-distilled 

i n t o  the  c e l l  u r - e r  ni t rogen atmosphere through an a l l  g lass  system. 

Transis tor  grade s u l f u r i c  acid was used t o  make 1 N solut ion.  Cathodic 

pre-e lec t ro lys i s  was carried out a t  0.1. Amp. f o r  20 hours, followed by 

anodic polar iza t ion  at 0.5 vo l t  f o r  10 hours. By the  end of t h i s  t rea t -  

ment t h e  anodic current densi ty  was no more than 0.2 &Amp.. 
I 

2.3 Results 

Fig.  5 shows the  change of capaci ty  and of nurrent at constant 

po ten t i a l  (0.62 V N.H.E.) as a function of t i m e  i n  the ethylene sa tura ted  

solut ion.  

the  same r a t e )  f o r  about 5 days. 

i n  F ig .  6 as C/i versus time. 

over t he  first t e n  hours and then increases with time. 

Both quant i t ies  are seen t o  decrease with t h e  (though not a t  

The same r e s u l t s  are plot ted again 

The r a t i o  remains e s s e n t i a l l y  constant 

P lo t s  of t he  va r i a t ion  3f capacitance with time i n  solut ions 
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through which only nitrogen was bubbled are given i n  Fig. 7. 

ison between regular and highly purified so lu t ion  is shown. 

A compar- 

The e f f ec t  

of addition of (C H ) N in to  the highly purif ied so la t ion  is  a l s o  shown. 

A better comparison i s  obtained i n  Fig. 8 where the  r e l a t i v e  values of 

the capacitance ( i n  t h i s  case C/Clooo where Clooo is the value obtained 

a f t e r  1000 min. under any one set of condi t ions)  are plot ted.  

3 7 3  

While 

two l inea r  sect ions appear t o  ex is t  on t h e  C - log t p lo t ,  a s ing le  

s t r a igh t  l i n e  is obtained when C is p lo t ted  vs. - t 
Fig. ga, b and c .  

-1/2 , as shown i n  

This r e s u l t  does not seem t o  depend on t h e  presence 

of impurit ies,  as seen by comparison of Fig.  9b and 9c. 

2.4 Discuss ion 

The decrease i n  ionic dovlble layer  capacity is  associated with 

a decrease i n  real surface area (or roughness f a c t o r )  probably due t o  

surface rearrangement. Support f o r  t h i s  view is  obtained from t h e  fact 

t ha t  t h e  phenomenon is  independent of solut ion pur i f ica t ion .  The e f f ec t  

cannot be due t o  hydrogen absorbed i n  t h e  metal s ince t h e  pseudocapacity 

a r i s i n g  from t h i s  is proportional t o  the hydrogen ionizat ion current  

a t  a constant po ten t ia l .  The l a t t e r  cannot exceed the  observed res idua l  

current  which is less than 16 of the applied galvanostatic pulse. 

A slow rearrangement of the p l a t  inum surf  ace following ac t iva t ion  

by anodic and cathodic pulsing i s  t o  be expected. Thus a phase oxide 

is undoubtedly formed during anodic polar izat ion at high poten t ia l s  

( >  1.8 V )  and when it i s  reduced rap id ly  during the cathodic cycle, 

a long time may lapse before the equilibrium configuration of t h e  P t  

atoms is  regained. The constancy of t h e  C / i  r a t i o  shows i n  Fig.6 over 
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0 a period of time is an indication t h a t  the  decrease i n  Current is  due 

here t o  a decrease i n  avai lable  surface area,  with 110 change i n  current  

dens i ty ,  The subsequent r i s e  of C / i  does, however, indicate  t h a t  other  

f a c t o r s  play a ro l e  i n  decreasing the  current  dens i ty  at  constant PO- 

t e n t  ial .  

We note t h a t  t he  t i m e  e f fec ts  do not depend on solut ion p u r i f i -  

cat ion.  

value of t he  capaci ty  subs tan t ia l ly  (Fig. 4 )  as expected, but  when t h e  

curves are normalized (Fig. 5 )  t o  have t h e  sme value at 1000 min., t he  

e f f e c t  of impurity i s  r a t h e r  small. 

Addition of an impurity in to  the  so lu t ion  decreases the absolute 
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V. MODEL POROUS ELECTRODE 

A. Transient Behavior 

1. The S l i t  System 

The pa r t i cu la r  geometry chosen f o r  the ' s l i t '  e lectrode c e l l  

was selected so as t o  give a s e t  of boundary conditions which would be 

reasonably close t o  a ' r e a l '  porous electrode ye t  would be mathematically 

t rac tab le .  Because of symmetry, the c e l l  i s  a two-dimensional system, 

reducible t o  one-dimension i n  most cases, with a plane of symmetry. 

lfiei1 operated with a small s l i t  spacing (i.e. ( ~ 0 . 2  mm) sild the s l i t  

completely f i l l e d  with e lec t ro ly te ,  these conditions should apply. 

The c e l l  vas arranged with the following conditions: S l i t  length: 

21 mm, s l i t  width,  .l5 mm, and meniscus length: - 50 mm. The  s l i t  was 

f i l l e d  with H2 saturated 1 I! H2SO4 t o  the  top. The electrode was Leld 

po tcn t io s t a t i ca l ly  at 0 V with respect t o  H2 (i.e.-50 mv wi th  respect  

t o  the M-Pd-H electrode used as a reference)  u n t i l  current dropped t o  

zero. 

due t o  imperfect compeneation by the potent iostat . )  

so lu t ion  i n  the s l i t  skould be  saturated with H2 and the electrode should 

be covered with adsorbed H a t  t!ie proper 0, corresponding t o  E = 0. A t  

a time, t = 0, a po ten t i a l  s tep  function i s  applied t o  the s l i t  e lectrode 

with a yoten t ios ta t  and the current recorded as a funct ion of time on a 

(A small random noise current of about 10bcA P-P s t i l l  remains 

A t  t h i s  point  the 

storage sscil loscope. The ps,teiltfal 2.a t:ieii s:;itc:~ed off agaiii, 

e lectrode allowed t o  come t o  equilibrium and the procedure repeated a t  

a slower eveep speed and increased. current  sens i t iv i ty .  Elultiple t races  



0 are stored on the oscilloscope, and i-t values are read from photographs 

of the traces such as are shown in Fig. 1. 

must elapse between measurements f o r  equilibrium to be approached 

sufficiently closely that the values obtained on two successive runs 

superimpose &thin - + 276, the accuracy of the scope). 

measurements can be made from ~ 0 . 0 5  msec (the approximate response 

time of the potentiostat-cell combination) to 10 sec., at which time 

steady-state operation is approached. 

long times of the trace taken at the slowest sweep speed). 

(Kote: 30 sec to 120 Sec 

In this fashion, 

(1Tote the almost flat portion at 

2. Transient Behavior Hy-pothese~: 

It has been fairly well established that the mechanism f o r  the 

anodic dissolution of H2 on Pt follows t h e  following reaction path. 0 
diffusion- 

(1) H2(so1n) .-) H2 (at surface of electrode) 

(2) H2(surface) -+ 2Hads 

( 3 )  R3 O+ + e  

where the dissociation reaction (2 )  is the rate-determining step at 

steady state. 

about lom3 A/cm2. Parsons (1) has estimated the io f o r  step (3) to be 

about 10" A/cm2. At stea?y state reaction (3) can t'ms be considered 

to be in pseudo-equilibrium, but during a transient this is not neces- 

sarily true. 

with Had,. 

On "activated" Pt surfaces, the io fcr reaction (2) is 

Consider an electrode initially at = 0 whic'n is covered 

Ihen an anodic pulse is applied, current will flow as the TTQ,ds 



0 i s  consumed. If the r a t e  of consimptioil i s  grea te r  than the  r a t e  a t  

whicli it w i l l  be produced by reaction ' ( 2 ) ,  the  coverage, 8 ,  w i l l  decrease 

and the po ten t i a l  w i l l  increase t o  nev values where the r a t e s  a r e  once 

a p i n  equal. AE long as molecular H i s  supplied t o  the  electrode a t  

a su f f i c i en t  rate, a new equilibrium value i s  reached. If the supply 

2 

of H2 i s  l i n i t e d ,  as by diffusion,  when a thickness equal t o  the  d i f fus ion  

l a y e r  " 8 "  has 3een exhausted of molecular H2, the  current  w i l l  again 

drop and/or the po ten t i a l  w i l l  r i s e  t o  a d.iffusion l imited value, and (1) 

becomes the  R.D.S. 

I n  the region between 0 V and 0.4 vo l t s ,  where 8 i s  a funct ion 

of voltage, varying between 8 1 a t  0.0 vo l t s  and Q n ~ 0  a t  0.4 vol t s ,  

the  e l e c t r i c a l  analogue of tlne electrode double layer  caii be considered 

t o  be as shom i n  Fis .  2. 

C D ~  i s  the usual double layer czpacitance of about 20pF/cm 2 , 
and represents  the movement of excess ions i n t o  and out of the double 

layer ,  and/or the change i n  distance of the Helmholtz plane t o  the elec-  

t rode sui-face under the influence of an applied f i e l d .  

res i s tance ,  d ?  /ai, of reac t ion  (2), and i s  highly voltage sensi t ive.  

R2 i s  the r eac t ion  

i s  a pseudo-caL>acitance, representing the change i n  voltage produced 

by a change i n  8, which i n  tu rn  i s  caused by the current passing through 

the  reac t ion  ( 3 )  represented by the reac t ion  res i s tance  R 

voltage sens i t ive)  . 

cPS 

(which i s  a l s o  3 

I n  many papers, the  impedance due t o  the d i f fus ion  res i s tance  

of s t ep  (1) i s  pictured as a 'black box' (--V-) ca l led  the ''IJarburg i m -  

pedance." For AC bridge measurements, a t  a given frequency, -W- can be 

where E and C a r e  chosen t o  0 represented as - 



have equal impedances at the given frequency and thus give the correct 

4 5 O  phrse shift. This simple circuit, besides being highly artificial, 

and having no real physical significance, is of no use in transient work, 

since a different R and C must be chosen for each instant of time, and 

the value of C must go to infinity for the steady state. Instead of the 

Warburg impedance, one can consider the diffusion impedance to be due 

to an RC transmission line, such as is shown in Fig. 3. This configuration, 

which is by definition a distributed constant representation and cannot 

be represented exactlx by any finite combiiation of real R's and C's, 

can be constructed as a lumped constant approximation to within any 

desired degree of accuracy, and has a real physical analogue in the 

difTusion layer. The produce RC of R, the 'resistance' per unit length, 

and C, the 'capecitance' per unit length, is the analogue of the diffusion a 
coefficient D (where 'I?' is the resistance t o  mass transport under a conc. 

gradient, and 'C' is the storage capability of the system due to its 

local coiicentration. The voltage on the 'common' connection represents 

the conceiitration in the bulk of solution. When a pulse is applied 

(meaning an abrupt change in concentration at the electrode), the con- 

centration at the electrode changes first, and the depletion propagates 

back t o  the 'termination' R, which represents the steady state supply 

of material at the boundary layer of the convection region, or  other 
I 

lines for each incremental area coniiected as another transmission line 

extending down the length of the slit where the R io the electrical 

resistance, and the Z ' E  are circuits as inFig. 3. 
e 



0 Any number of simplifying assurxptione can be made t o  reduce the 

system t o  one which i s  more easi ly  t r ea t ab le  mathematically, depending 

on the conditions of measurement. 

3. Possible Models and Boundary Condi3ione 

a. Vide s l i t  , high e l e c t r i c a l  conductance 

This system should behave as an idea l  f l a t  electrode, and a t  shor t  

times should be equivalent t o  a simyle RC discharge of t h e  double iayer  

and adsorbed H atoms. 

decay as i = e 

With an applied potei i t ia l  s tep,  the  current should 

E -t/RC 

b. IJarrov s l i t ,  r e l a t ive ly  high s e r i e s  res i s tance  of e l ec t ro ly t e  

This i s  represented by a simple transmission l i n e  as shown by 

2 1/2* 

0 
D e  Levie . The current decay shoulcl  f a l l  as l/t 

c. Wide s l i t ,  high resis tance,  d i f fus ion  control 

This i s  a l s o  represented by a similar transmission l i n e  with 

2 i f fe ren t  constants and should decay ae  l/t I/? 

d. Others 

lbny  other configurations are possible  but have not ye t  been 

analyzed. 



4. Experimental Reeults 

The current d.ecay with poten t ioa ta t ic  s tep  functions on a wide 

( d  5 nm) s l i t  a r e  sliovm i n  Fig. 4. 

t o  po lar iza t ion  a t  200, 400, 600 and 800 mv. I n  the lowest two t races ,  

(namely, 200 and 4-00 mv) the  curves a r e  smooth monotonically decreasing 

functions. 

Four t r aces  are shown corresponding 

The upper two curves (at  600 and 800 mv) start  out s imi la r ly  

but have a d e f i n i t e  i n f l ec t ion  point. 

t h a t  the  area up t o  the inf lec t ion  coi-resp0nd.s (+ 2G$) t o  the charge t h a t  

would be obtained from a peeudo-capacitance due t o  8 = 1 on the surface. 

In tegra t ion  under the curves sbov 

- 

Discharge curves r r i t h  a narrov s l i t  (“0.13 mm) such as shown 

i n  Fig. 1 show no such inf lec t ion .  Reeults of four such t rans ien ts  are 

p lo t ted  i n  Fig. 5. 

0 Data i s  p lo t ted  as Itotal vs. l og  t. Each of the curves cons is t s  

A l l  of them consist of two l i n e a r  port ions of d i f f e r -  of 3 - 4 segments. 

en t  slopes, followed by an assymptotic t a i l  corresponding t o  steady 

s t a t e  diffusion, and are preceded by a deviat ion a t  very shor t  times 

(i.e. < 10-3 t o  10-4 scc) d=e t o  instrumental inaccuracies. 

cussion of e r ro r  ana lys i s  TTASA report  Oct. 63 t o  Mar. 64 p. 23-24). 

The middle tvo segments show remarkable l i n e a r i t y ,  espec ia l ly  when it  i s  

considered that each curve i s  a r e su l t  of the superposit ion of 5 separate  

(See ais- 

sequent ia l  sweeps. 

t o  the  applied voltage s tep,  and i s  probably a t t r i b u t a b l e  t o  some equi- 

vaienc s e r i e s  so lu t ion  resis tance,  and i s  about i j n i n  tile experiments 

The i n i t i a l  naximum current  i s  d i r e c t l y  proportional 

here. 

ind ica t ing  that the reac t ion  a t  eliort times takes place over a very small 

(The sheet rcsietaiice cjf t h e  s l o t  e l ec t ro ly t e  i s  about l ? O l r / s q .  

0 
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regioil a t  the mouth of the s l i t . )  

various curve segments. 

I n  Table I are l i s t e d  the  Plopes of the 

It i s  in te res t ing  t o  note t h a t  both the upper and lower segments 

of t he  400, 600 and 300 mv curves extrapolate  t o  two common pointe 

'A '  and 'B ' ,  The curve f o r  200 mv does not extrapolate  t o  these points.  

TABLE I 

Step Voltage Slope 1 Slope 2 

200 

400 

Goo 

800 

- 3 ma/decade 

- 7  

- 14 
-20.5 

- 2.1 
- 5.1 
- 8-25 

-11.8 

But, it i s  probably s igni f icant  that  a t  400 mv and above, Haas i s  

completely consumed from t h e  electrode surface,  vh i le  a t  200 mv 8nJ1/2. 

5. Discussion of R e s u l t s  

Bone of the  s i m l e  pro2oscd models which on the  surface appear t o  - 
be a reasonable explanation w i l l  eu?laia an - i VS. l o g  t behavior, and 

these experiments y ie ld  - t v o  such regions. 

unexpected mechanism i s  operating i n  the  s l i t  electrode system, which 

w i l l  r equi re  more thorough invest igat ion and/or mathematics t o  i~ncover 

Obviously, then, some h i the r to  
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B. Meniscus Heatins Effec t  

Experimental work has continued on the  meniscus heating e f fec t .  

Motion p ic tures  of t:ie meniscus have been takeii on 8 mm f i l m  through a 

Bausch and Lomb s te reo  microscope, using a Konica movie camera with a 

microscope attachment. 

"Remiphot" microscope exposure meter v i t h  an index s e t t i n g  of 

and an ocular s e t t i n g  of "4". 

with ''stop-motion" photography a t  about 2 frames per  second, giving a 

"speed up" f ac to r  of 5 - 8 times. 

been observed and photographed. 

Exposures vere determined with a Reichert  

-1" 

Pictures were taken a t  normal speed, and 

Several  types of meniscus films have 

1. Uniform Activated Meniscus 

Wheq the electrode i s  immersed i n  e l ec t ro ly t e  and giver, a l t e r n a t e  

anodic and cathodic pulses, the electrode becomes more ac t ive  f o r  a short  

while (1 - 5 hours), probably because of destruct ion of adsorbed organicfi, 

and removal of oxide films. When the  e l ec t ro ly t e  i s  lowered, forming a 

meniscus, t h i s  region i s  ac t ive  and gives a uniform droplet  region .002 

t o  .OO? inches high. 

0 

2. Regionally Active Meniscus 

After  extended operation the electrode surface slowly loses  

a c t i v i t y ,  and the ac t ive  region of the meniscus breaks up and becomes 

localized. 



3. Local ,Hi[$I.y Active liegions 

A s  the sputtered f i l m  degenerates, small f lakes  of P t  sometimes 

dislodGe and f l o a t  iii the meniscus region i n  contact with the primary 

electrode,  

around which the droplet  a c t i v i t y  i s  espec ia l ly  obvious. 

This r e s u l t s  i n  a small (.001 - .01 i n )  hyperactive region 

Several  hundred f e e t  o f  f i l m  have been taken of these various 

regions a t  normal and ' fast '  time scales ,  and are a t  present being eval-  

uated and edited. A complete quant i ta t ive evaluat ion w i l l  probably be 

impossible, but work i s  underway f o r  a thorough qua l i t a t ive  explanation 

and emlua t ion  of the resul tp .  It i s  c e r t a h l y  obvious however t h a t  the  

equation V2T = 0 must be  considered along w i t h  2 C = 0 and 2 V = 0 

i n  t he  treatment of d i f fus ion  i n  a porms electrode. 
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V I .  NATURE OF TK% CATArIS.2 SWZACE 

ElXpsometric Study of Oxide Formation on a Platinum Catalyst  Surface 

A T a r t  from a study of the influence of the metallurgical charac- 

t e r i s t i c s  of the ca ta lys t  surface on the k ine t ics  of electrode react ions,  

there  i s  also a v i t a l  need t o  know under vhat conditions the ca ta lys t  can 

be covered by a surface oxide. 

Tovards t h i s  end, an ell ipsometric study of a br ight  platinum 

anode immersed i n  1 17 €$SO4, was carr ied out. 

tained po ten t io s t a t i ca l ly )  the re f lec ted  polarized l i g h t  wac studied. 

From the parameters of t he  ref lected polarized l igh t ;  the  thickness of 

the oxide f i l m ,  i f  any, was determined. 

A t  each po ten t i a l  (main- 

' k e  strldy hac beer, completed and a report  of the work has been 

Tvo important conclusions submitted f o r  y u b l i c a t i m  (see Appendix 1). 

may be mentioned here: 

(1) The adsorbed oxygen which ha& been demonstrated t o  e x i s t  on 

a platinum anode i s  transformed into an "oxide" above about 0.975 V 

(VS. "E) 

(2)  Thereafter, the "oxide' grows l i n e a r l y  with potent ia l ;  the 

el l ipsometr ic  thickness-potential  curve agreeing t i i t h  that determined 

coulometrically. 
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APPENOIX I 

Jouriial of Elcctroanalytfcal  --._ Cliernlst;-y 

Short Communication 

ELLIPSONETRIC STUDY OF OXYGETT-COTTTAIJ!?IlTG FIDE OIJ PLATIITUII ELECTRODES 

This brief communication de,ccribes the  main r e s u l t s  which have 

emerged from an ell ipsometric study of the oxyzen-containing films on 

br izh t  platinum sheet-anodes i n  acid solutions (1 IT H2S04)  . 
i s  a d i r e c t  and i n  s i t u  opt ica l  method of examining films on r e f l ec t ing  

surfaces. 

produce on the polar izat ion s t a t e  of a l i g h t  beam ref lec ted  from o, metal- 

l i c  mirror .  

Ellipsometry 

-I_ 

It i s  based on a study of the changes which surface films 

1 
The pa r t i cu la r  ell ipsometric method used i s  t h a t  of a quant i ta-  

t i v e  s t u w  of films held i n  a steady-state condition by means of a poten- 

t i o s t a t  (Fig. I). The parameters of the re f lec ted  e l l i p t i c a l l y  polarized 

l i g h t  were determined while maintaining the po ten t i a l  of a re f lec ted  

platinum sheet-anode a t  various values. 

thickness of the f i l m  was calculated using standard el l ipsometr ic  pro- 

cedures 

From these parameters, the 

2 

The dependence of average film thickness on po ten t i a l  i s  shown 

i n  Fig. 2. (i) a t  po ten t ia l s  

less pos i t ive  than about 0.98 V ( ~ 6 .  IT.H.E.), there i s  no el l ipsometr ic  

The thickness-potential  p lo t  shows that:  

evidence of a f i l m  although the sens i t i v i ty  of t h e  technique i s  about 

0.1 A; 

a t  about +0.$80 + 0.010 V; 

increases  l i n e a r l y  with poten t ia l  (a r e s u l t  which i s  i n  s t r ik ing  agreement 

0 c i i j  a f i l m  (of average tbic1mess tu 0.2 81 "comes on" yJ.d.d-eoly 

(iii) and thereaf te r  the f i l m  thickness - 

with those of coulcmetry 3 - 5  



Computer analysis  of the el l ipsometr ic  data shows t h a t  the re f rac-  

t i v e  index ( %*) of the f i l m  i s  a complex quantity,  i.e., 

The real p a r t  ( %) of the  complex r e f r ac t ive  index i s  3.3. 

p a r t  i s  the absorption coeff ic ient  (IC) which i s  a measure of the conduc- 

3" = % f ik. 

The imaginary 

t i v i t y  of the f i l m  a t  op t i ca l  frequencies. The  r e s u l t s  ind ica te  t h a t  

t h i s  con$-uctivity a t  op t i ca l  frequencies ( i n  this case of the f i l m  oil 

platinum) i s  of the same order as that of a metal, jv.dging from the order 

of magnitude of the same optical-frequency quant i ty  f o r  eemi-conductors 

and metals. 7>8 

The el l ipsometr ic  detection of a surface f i l m  depends on the op- 
* t i c a l  constants (% ) of the f i l m  being s u f f i c i e n t l y  d i f f e ren t  from those 

of the surrounding medium. It i s  suggested, therefore,  tha t  the difference 

between chemisorbed oxygen and water i s  too small t o  make a chemisorbed 

oxygen f i l m  r e g i s t e r  i n  the ellipsometer. 

with oxygen t o  form a new phase, the op t i ca l  constants between t h i s  

When, however, platinum jo ins  

"oxide" and the surrounding water are adequate t o  produce an ellipsomet- 

r i c  e f fec t .  The average thickness of 0.2 8 of t h i s  platinum "oxidel' 

f i l m  i s  interpreted i n  terms of a "pa r t i a l "  coverage of a mono-layer 

of oxide. 
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